Engineering Measurements

Chapter Two

Analysis of experimental data

By
 Laith Batarseh

Introduction

In engineering practice, the experimental work has a high importance because it is the connection between the real case and the simulate one.
\square when performing the experiment, engineers try hard to achieve certain level of validity. Validity means how much we can trust the data obtained from an experiment. The level of trust in data is called the level of confidence
\square when performing the experiment - even with highly calibrated accurate measurement devices, error will enter to the experiment without knocking.
\square Error mean in its simplest definitions: the deviation from the true. In this manner, error is the opposite of accuracy. Knowing the sources of errors in the experiment allow the experimenter to eliminate it and enhance the results.

The analysis of error is a fundamental process done on the experimental data to reduce the gap between the true and measured values.

Analysis of experimental data

Uncertainty analysis

Kline and McClintock establish a method to calculate the uncertainty. They define the uncertainty as a range where the true value lies in. for example, if a temperature measurement was

$$
\mathrm{T}=103 \mathrm{C}^{\circ} \pm 1^{\circ} \mathrm{C}
$$

$>$ The \pm sign means that the experimenter is not sure about the results and he/she define the range where the true value lies. In our example, the experimenter implies that the true value lies between $102 \mathbf{C}^{\circ}$ and $104 C^{\circ}$.

Analysis of experimental data

Uncertainty analysis

If a set of measurements is made and we wish to calculate the total uncertainty for the total set, we can follow these procedures:
\square represent the results in terms of $R . R$ is a function in independent variables: $x_{1}, x_{2}, \ldots, x_{n}\left(\right.$ i.e. $\left.R=R\left(x_{1}, x_{2}, \ldots, x_{n}.\right)\right)$
\square Define the uncertainties for each independent variable. For example, $w_{1}, w_{2}, \ldots, w_{n}$.
$\square A s s u m e w_{R}$ is the total uncertainty :

$$
w_{R}=\sqrt{\left(\frac{\partial R}{\partial x_{1}} w_{1}\right)^{2}+\left(\frac{\partial R}{\partial x_{2}} w_{2}\right)^{2}+\ldots+\left(\frac{\partial R}{\partial x_{n}} w_{n}\right)^{2}}
$$

Analysis of experimental data

Uncertainty Example [1]

The resistance of a copper wire is given as:

$$
R=R_{o}[1+\alpha(T-20)]
$$

Where: $\mathbf{R}_{\mathrm{o}}=\mathbf{6 \Omega} \pm \mathbf{0 . 3 \%}$ is the resistance at a reference temperature $\left(20^{\circ} \mathrm{C}\right)$, $\alpha=0.004{ }^{\circ} \mathbf{C}^{-1} \pm \mathbf{1 \%}$ is the temperature coefficient resistance and the

calculate the wire resistance and its uncertainty.

Solution

The nominal resistance: $R=(6)[1+(0.004)(30-20)]=6.24 \Omega$

$$
\begin{aligned}
& \text { Analysis of experimental data } \\
& \text { Uncertainty Example [1] } \\
& \text { Solution } \\
& \text { The total uncertainty can be calculated using the general form } \\
& w_{R}=\sqrt{\left(\frac{\partial R}{\partial x_{1}} w_{1}\right)^{2}+\left(\frac{\partial R}{\partial x_{2}} w_{2}\right)^{2}+\ldots+\left(\frac{\partial R}{\partial x_{n}} w_{n}\right)^{2}} \\
& \frac{\partial R}{\partial R_{o}}=1+\alpha(T-20)=1+0.004(30-20)=1.04 \\
& \frac{\partial R}{\partial \alpha}=R_{o}(T-20)=6(30-20)=60 \\
& \frac{\partial R}{\partial T}=R_{o} \alpha=(6)(0.004)=0.024
\end{aligned} \begin{aligned}
& w_{R_{o}}=(6)(0.003)=0.018 \Omega \\
& w_{\alpha}=(0.004)(0.01)=4 \times 10^{-5} C^{-1} \\
& w_{T}=1 C
\end{aligned}
$$

Solution

The total uncertainty can be calculated using the general form

$$
\begin{aligned}
w_{R} & =\sqrt{((1.04)(0.018))^{2}+\left((60)\left(4 \times 10^{-5}\right)\right)^{2}((0.24)(1))^{2}} \\
& =0.0305 \Omega \text { or } 0.49 \%
\end{aligned}
$$

Analysis of experimental data

Uncertainty Example [2]

$>$ Two resistance are connected in series as shown in the figure

If the measurements of voltage drop across these R_{1} and $R_{2}\left(E_{1}\right.$ and E_{2} respectively) were found as

$$
\begin{gathered}
E_{1}=10 \mathrm{~V} \pm 0.1 \mathrm{~V}(1 \%) \\
E_{2}=1.2 \mathrm{~V} \pm 0.005 \mathrm{~V}(0.467 \%)
\end{gathered}
$$

And the value of R_{2} was found as $R_{\mathbf{2}}=0.0066 \Omega \pm 0.25 \%$
Now, find the power dissipated in resistance in R_{1} and its uncertainty.

Analysis of experimental data

Uncertainty Example [2]

Solution

The power dissipated (P) through a resistance R_{1} is given as: $\boldsymbol{P}=\boldsymbol{E}_{1} I$ and the current passes through the resistance (I) is calculated as: $I=E / R$ so the power dissipated through a resistance R_{2} is calculated as:

$$
P=\frac{E_{1} E_{2}}{R_{2}}=\frac{(10)(1.2)}{0.0066}=1818.2 \mathrm{~W}---(1)
$$

The relation between P and the drop in voltage E is a product relation, so:

$$
R=\left(x_{1}^{a_{1}}\right)\left(x_{2}^{a_{2}}\right) \ldots\left(x_{n}^{a_{n}}\right) \Rightarrow \frac{w_{R}}{R}=\sqrt{\sum_{i=1}^{n}\left(\frac{a_{i} w_{x_{i}}}{x_{i}}\right)^{2}}
$$

Then

$$
w_{P}=(0.0111)(1818.2)=20.18
$$

Analysis of experimental data

Selection of measurement method and measuring instrument

When an experiment includes many variables to measure and we have many options to perform the experiment, the method of measurement must be selected carefully. The selection of measurement method depends, mainly, on:
the level total uncertainty desired
\square Time and effort
-Cost
\square Environmental conditions and technical difficulties

Analysis of experimental data

Example [3]: selection of measurement method
A resistor (R) has a nominal stated value of $10 \Omega \pm 1 \%$. The circuit shown in the figure was used to measure the current (I) passes through R and the voltage drop (E) across R. To find the
 power (P) dissipated in R, we have tow formulas:

1. $P=E^{2} / R$
2. $P=E I$

The first method implies a single measurement for (E) while the second needs another measurement for (I). If the measurements for I and E were:
$E=100 \mathrm{~V} \pm 1 \%$
$I=10 A \pm 1 \%$
Find the uncertainty in the power calculations using both methods

Analysis of experimental data

Example [3]: selection of measurement method

Solution

Case 1: $\begin{aligned} \frac{\partial P}{\partial E} & =\frac{2 E}{R} \\ \frac{\partial P}{\partial R} & =-\frac{E^{2}}{R^{2}}\end{aligned} \Rightarrow w_{P}=\sqrt{\left(\frac{2 E}{R}\right)^{2} w_{E}^{2}+\left(-\frac{E^{2}}{R^{2}}\right)^{2} w_{R}^{2}}$
Divide by $\mathbf{P}=\mathbf{E}^{2} / \mathbf{R} \quad \frac{w_{P}}{P}=\sqrt{4\left(\frac{w_{E}}{E}\right)^{2}+\left(\frac{w_{R}}{R}\right)^{2}}=\sqrt{(4)(0.01)^{2}+(0.01)^{2}}=2.236 \%$
Case 2:

$$
\begin{aligned}
& \frac{\partial P}{\partial I}=I \\
& \frac{\partial P}{\partial I}=E
\end{aligned} \Rightarrow \frac{w_{P}}{P}=\sqrt{(0.01)^{2}+(0.01)^{2}}=1.414 \%
$$

Analysis of experimental data

Example [3]: selection of measurement method

Comment

\square You may see from the previous example that the uncertainty decreased when in the $2^{\text {nd }}$ case although there were two uncertainties even there was one uncertainty in $1^{\text {st }}$ case.
\square This is not necessarily correct for all cases. However, we can conclude that the selection of method depends on the 4 factors we mentioned before. In our example, reducing the uncertainty means more effort, more time and more cost.

Example [4]:

Solution

$x_{m}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{10}(23.78)=2.378 \mathrm{kPa}$

$\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x_{m}\right)^{2}}=0.7388$
3. $\sigma^{2}=0.5458 \mathrm{kPa}^{2}$

$\left|\overline{d_{i}}\right|=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-x_{m}\right|=0.61$

E	Analysis of experimental data				
i	Example [4]: solve using table				
e	No.	x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{m}}$	$\mathrm{d}_{\mathrm{i}}{ }^{2}$	$\mid \mathrm{d}_{\mathrm{i}}$ \|
r	1	1.25	-1.128	1.272384	1.128
i	2	2.45	0.072	0.005184	0.072
g	3	1.10	-1.278	1.633284	1.278
	4	2.03	-0.348	0.121104	0.348
m	5	3.11	0.732	0.535824	0.732
a	6	2.95	0.572	0.327184	0.572
${ }^{\text {u }}$	7	2.36	-0.018	0.000324	0.018
${ }^{1}$	8	3.42	1.042	1.085764	1.042
m	9	3.01	0.632	0.399424	0.632
${ }^{\text {e }}$	10	2.10	-0.278	0.077284	0.278
${ }_{\text {t }}$	Sum	23.78	------	5.45776	6.10

